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Abstract—Many approaches to tackle causal discovery have
been discovered until now. The main focus through such a
framework is to establish a relation between the cause and
the effect. In our work we have implemented a model to
explain how causal discovery can be established between different
sensor nodes in a smart city setup to automatically establish
communication amongst peripheral nodes in a defined sub-
network. By first establishing the communication protocol for
a sub-network in a smart city, we have scaled it up to multiple
sub-networks present in the city topology. From those nodes, we
scale the communication to all the defined sub-networks in the
city. Establishing causal relations for sub-networks representing
individual cells has been the focus of our work.These causal
relations have been used to implement a node retrieval protocol
for a smart city sensor discussed in our previous work [1].

Index Terms—Causal Discovery, Smart Cities, Multi-Cell Sys-
tem, Sub-networks, Internet of Things (IoT)

I. INTRODUCTION

Causal Discovery is a technique that can be used to build
a framework for establishing causal relationships[16]. These
relationships are formed through observational data, and there
are a variety of reasons that might lead to the formation of
these relationships. A causal model is programmed to predict
how a system will act by predicting its dynamics. The truth
value in this stipulation relies solely on the the prediction
of the intervention effects. While these are counterfactual
assertions relating to the system, it’s safe to say that the prob-
abilistic nature of variables represented in such a model are all
aspects of a causal model. Since probabilistic correlations can
be established among variables as the results of experimental
interventions, causal models can also be inversely used to
predict whether they are consistent with them.

Smart cities comprise of multi-modal application of IoT
systems and 5G networks to produce a low latency frame-
work that can enable quick and resilient communication. 5G
resource allocation frameworks are often closely linked with
dynamic edge computations that support such communication
frameworks. In our previous work [1], we have discussed
such a smart city framework that uses a MIMO based com-
munication framework to enable interactions between various
infrastructure units and other units in the city framework. In

our current work we focus on establishing a causal discovery
based mechanism for identifying sensor nodes at different
hierarchies of the smart city framework .The mechanism is
further extended to an advanced groundwork for identifying
latent variables relevant to the smart city topology.

In our previous work [1] we have explained a hexagonal
city framework communicating using MIMO communication
protocol. The city framework operates based on a hierarchical
distribution of sensor nodes operating on the cloud. The sensor
node distribution in the city comprises of three types of
nodes, edge cloud node, fog cloud node and the central cloud
node. These are distributed in a way to facilitate efficient
communication protocols between different entities of the city
topology. In the current work, we have built upon the previous
work to add a mechanism for causal discovery to recognise
the node mapping of all sensor nodes in the topology. This
has been further applied to understand nodes that are non
operational in the city owing to a disaster.The left figure in
Figure 1 shows a detailed account of the proposed topology in
the first paper, while the links shown to the sensor distribution
in the right figure show the cluster systems proposed in this
paper.

The paper has been structured in the following way. The
related work section discusses the papers that were relevant
to the causal discovery model proposed in this paper. The
next section discusses in detail about the causal discovery
model, discussing about the topology details, the methodology
to establish causal cues, the experiment details to estimate
the latent variables and finally the mathematical formulation
for identifying the node mapping for the smart city topology.
The next section discusses relevant details of the implemen-
tation for the experiment and the results obtained through
the proposed causal discovery model and is followed by the
conclusion section finally.

II. RELATED WORK

[4] presents a framework for group identification based
on causal discovery. They propose a specific and shared
causal model (SSCM) that accounts for the variability of
causal links among individuals/groups while leveraging their



Figure 1. The city topology as implemented in [1]. The extended network topology on the right shows the FCN sensors[blue] and the ECN sensors[yellow]

commonalities to achieve statistically valid estimation. In most
state-of-the-art approaches to causal discovery, an underlying
causal model is assumed to be fixed. However, causal mod-
els frequently differ between domains or people as a result
of potentially missing elements that impact the quantitative
causal effects. The learnt SSCM provides particular causal
knowledge for each individual as well as a population-wide
trend. Furthermore, the calculated model directly offers each
individual’s group information. The proposed method’s effi-
cacy is demonstrated by experimental findings on synthetic
and real-world data.

To use Structural Causal Models (SCMs) for counterfactual
reasoning, understanding the causal mechanisms that yield
factorization of the corresponding conditional distributions
deterministic functions that map the noise realisations to indi-
vidual samples. [3] propose that when evaluating counterfac-
tual treatment effects, the optimum causal mechanism should
be chosen based on quantitative criteria such as variance
minimization. A parameterized family of

Gumbel-max-like causal processes is shown. They show that
they can be trained to minimize counterfactual effect variance
and similar losses on a distribution of interest inquiries, re-
sulting in lower variance estimates of counterfactual treatment
impact than fixed alternatives and generalising to queries not
encountered during training.

III. CAUSAL DISCOVERY MODEL

In our previous work[1], we have proposed a hexagonal
based city topology comprising of three hierarchical units.
These were the fog cloud node [FCN], the edge cloud node
[ECN] and the central cloud node [CCN]. The overall topology
proposed in the previous work focuses on establishing 121 (In-
frastructure to infrastructure), and V2X (vehicle to everything)
communications. The paper also discusses mechanisms for
node retrieval in case a node becomes dysfunctional in the case
of a disaster. In this work, we have focused on establishing
causal relationships between inter-sensor data exchanges. In
the modelling of the topology, sending of a message can be
identified as a cause and the corresponding effect would the
receiving of the message. The nodes that have been identified

with the data exchange hence form the base for establishing
the causal links for the smart city topology. In our work, the
exchange of sensor data essentially comprise the basis of the
causal relationship amongst the sensors in the topology.

A. Topology Details

In the proposed smart city topology, one sub-network has
been defined as a part of the city topology comprising of a
CCN sensor in the center of the topology, while the FCN
sensors to be distributed on the corresponding hexagonal edges
on the vertices of the hexagon. These sensors are ideally
considered to be presented on road intersections. ECN sensors
have been defined to be distributed on the side of correspond-
ing roads, hence enabling V2I (vehicular to infrastructure
communication) protocols. 12 communication as proposed in
[1] can be carried out between any sensor unit.

A cluster is defined as consisting of the ECN, and CCN
sensors in the periphery of an FCN node. This is essentially
established for the nodes that will be in the range of the FCN
sensor (refer to figure 1). In the topology, we have identified
the causal relationship in the form of cause and effect for
the sender and the corresponding receiver node. This way, the
modelling has been carried out by assuming all the sensor

nodes are represented by the notation T = { (™), y(™) }:]:1
. Here x is used to represent the sender sensor and y represents
the receiver sensor. In this notation, the periphery sub-network
sensor nodes have also been considered.

All the entities of the clusters hence respond to the pa-
rameter y , that represent the state (active or inactive) of the
sensor. This way, the total number of active sensors in the sub-
network can be allocated in a group of sensors represented by
C e {1,..., ¢}V that A parameter E represents the total
number of entities defined for c clusters in the sub-network
topology. This way, clusters have been created in the sub-
network group based on their state. Based on the parameter
7, all the entities belonging to one of the defined C clusters
have been defined over N (pc,o?).

Defining the likelihood over a function E, the likelihood
clustering has been carried out for the function Cg, to represent



the likelihood of clusters defined over the entities in the smart
city.Hence the likelihood estimate for the entities in the cluster
can be understood from the following equations :

C= {uc}il ,and Cg = ¢(C,E)

Ce =log[Tj—y { vy exp (— 522 (v, — 1))}

This idea has been extended in the upcoming sections
for extending the node retrieval protocol discussed in the
previous work and establishing the causal relations for the
sensors. Figure 1 showcases the implementation as carried out
in the previous work. The network topology has the added
representation of the sub-network implementation. The figure
shows the representation of one cluster in the topology.

B. Establishing Causal Cues

In a part of the city topology, for instance junctions as
explained in [1], the proposed hexagonal structure would
follow. But in a city, there would be several such junctions that
would correspond to several more sub-networks other than the
6 sub-networks that would be created based on the topology
at one junction. We define causal cues as the correlations in
the data exchange for clusters in the various sub-networks.
Similarly, there might be various clusters that are common to
many sub-networks. Therefore, this establishes the need for
an automated strategy to implement causal relations between
multiple sub-network clusters. This way, the devised algorithm
for causal cues can be used to perceive the communication
trends over inter- sub-network clusters.

For the entire topology, we have assumed n number of total
clusters identified for a total number of k£ S,,.; sub-networks,
we have focused on modelling the causal cues of one cluster
over the entire sub-network. Assuming low latency for the data
exchange, we are considering all communication protocols to
be operating without any time lag. P; has been defined as the
set of immediate causes based on the cluster interactions in
a sub-network. We define the causal cue for a sensor entity
S, belonging to a cluster of the sub-network S,,.;, in the city
topology at a time instant ¢,to be generated as the process[4]

pi
Z Snetk =Z Z Sij,p

JEP;: p=1j€L;
| —

So(t) =

total causal discovery

q
P (Scij) = ZP(Zk =1) P (Scij | th,ij» Ok,ij) »

k=1
The second equation explained above strength from z; to
x2,e1 and ey denote the noise where P (b | pi,ij, Ok,ij) =
N (b5 | uk7ij’012c,ij> and N (-) denotes a terms w.r.t z; and
Z9, referring to the Gaussian distribution, P (2 = 1) = mg,
and 22:1 7, = 1.The term S.;; represents the instantaneous
causal influences from the overall variable j to i for the S,,¢;
cluster. z; has been used for the k. h cluster representation in
the distribution. This approach[2] suggested a measure I to
quantify linear causal effect (CE) of perturbation to further
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Figure 2. Algorithm for latent variable modelling

quantify causal interaction between the sub processes.

IZ5(r) = W(7)

i—J

where W’ (1) represents the iterative computed matrix products
of the corresponding estimated coefficient matrices ®(7) by

U(r) = Z U(s)®(r — s)
s=1

The sum over the products of path coefficients exclusively
along causal paths through k is the mediated causal effect
(MCE) through a component k.
c k
1MGP () = Wji(r) = 0 (7)
By implementing the hence discussed clustering mechanism,
we have focused on comparing our implementation with ex-
isting one’s over real-time and synthetic data-sets. The results
of the simulations have been discussed in the sections below.

C. Estimating Latent Variables

In the case of a network topology, one of the crucial factors
for effective communication is the resilience corresponding to
its nodes. In case of a node failure, effective mechanism to
ensure quick mitigation of node damage is very important.
We have considered the resilience of the sensor nodes as the

latent variable for the smart city topology. Using a gener-
alized Gumbel-max coupling mechanism[3], we have focused
on establishing causal mechanism to extend the node retrieval
protocol discussed in the previous work.
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Figure 3. Initial Causal Graph-1
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Figure 4. Initial Causal Graph-2

We have taken forward the theoretical framework extended
in [1] and incorporated the coupling technique discussed in
[3]. This way, in the case a node is identified as not working,
the implemented mechanism lays down a foundation for CCN
node to identify the faulty node using a coupling technique.
The discussed mechanism comprises of two steps. The first
step essentially is to identify the corresponding node mapping
for the sensor distribution in the smart city topology.

D. Identifying node mapping For Smart City topology

Based on [5] we have implemented a mapping representing
the network distribution of the nodes in the smart city as the
following representation:
7p : ROnet — RSnetXSnet Hence the entity network in all
the sub-networks is reduced from a categorical distribution
p € RSt to an auxiliary joint distribution 7y (x, z | p) for the
entire city topology which is represented as a matrix 7y (-, - |
p) € RSnet*Snet We have used the following equation to

implement a coupling for a sensor distribution for the entire
sub-network as a function over the variables x, and y defined in
the topology details sub-section of the causal discovery model
section. :
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Figure 5. Recovered Causal Graph-1
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Figure 6. Recovered Causal Graph-2

M), = max {7zn on +log 7o (2", 2" | p)}

Pa(@)]," = max { (7)), +logs(y",=" | 4)}

& = argmax” {1 (p)}"

AT

g™ = argmax {72(q)}"

The mappings construction is confined in such a way to
marginalise away the auxiliary variable ’z’. This provides
a distribution that is consistent with the provided nodes,
represented by the notation i.e., Y mg(x,z | p) = p(x). We
then generate K? independent v, , ~ Gumbel(0) samples
and perform Gumbel-max on the auxiliary joint.The map-
pings construction is confined in such a way that marginal-
ising away the auxiliary variable 'z’ provides a distribution
that ~y(p) = max, {Vs,. +logme(z,z | p)} and then return
& = argmax{vy(p)}. Because this involves doing Gumbel-
max on a joint distribution with accurate marginals and then
marginalising out the auxiliary variable, hatz is distributed
according to p. We execute this process individually for p and
q, but with shared realisations of the K2 Gumbels, to create
a coupling.

IV. IMPLEMENTATION DETAILS AND EXPERIMENTS

In this section we have discussed the details regarding the
implementation for the causal discovery. The implemented
algorithm has been tested using synthetic data for the city



topology. The main goal of the experiment is to carry for-
ward the framework proposed in [1] by incorporating causal
discovery. The enhanced framework has been implemented to
identify non-functional faulty nodes in the city topology. These
nodes could be rendered faulty due to a disaster or any other
reason. We first explain the experiment setup to carry out the
causal discovery in the topology and then discuss the details
of the results obtained.

A. Experiment

The efficacy of the implementation for causal discovery dis-
cussed in the previous section has been tested using synthetic
simulation.The synthetic data generation has been carried out
following the model proposed in [4] with a parameter of
0.3. The generated causal structures follow acyclic style and
the graph structure is being represented by G. Each graph
generated has n variables. These have been carried out for
samples size a,b,c of the number of clusters. These group cases
have been generated to support a real-time scenario of cluster
generation.

For the causal discovery, we have focused on the identi-
fication of causal relation based on the proposed approach.
The proposed technique in the paper has been referred to as
MCCD - Multiple Cell Causal Discovery. For understanding
the efficiency of the algorithm, we have compared our results
for synthetic data with benchmarks related to similar work
in the field. For verifying the results we have focused on
establishing the F1 score to measure the accuracy obtained on
F1 graph. These accuracy are essentially a score with which
the provided methods can replicate a learned graph. In the
results discussed in figure 4, we compare the established model
with 4 other baselines for F1 scores, where F1 score refers
to the ability to learn the graphs efficiently. These baselines
are SSCM[4], LINGAM][14], IB[15], and MCJ15]. The results
clearly show our model outperforms other benchmarks.

Through the algorithm discussed in the previous section,
the sensor distribution in the city topology can be understood.
Using the topology details understood from the city mapping,
we carried out experiments to analyse the sensor node details.

B. Discussion

In this section the results obtained in the experiment section
have been discussed. Figure 3,4,5,and 6 showcase the results
of the simulations. The figure 5, and figure 6 showcase the
results of the recovered causal graphs represented by Figure
3, and Figure 4. As shown in the figures.

1) Graph-1: In the case of graph-1, it can be observed that
the recovered graph in the case of our proposed methodology,
MCCD achieves almost the same causal graph in figure -5
as followed in figure 3. The graph recovery performance in
the case of MCCD also outperforms the performance of other
techniques.

2) Graph-2: In the case of graph-2, it has been observed
that the recovered graph in the case of our proposed methodol-
ogy, MCCD achieves almost the same causal graph in figure-6
as followed in figure-4. The graph recovery performance in

the case of MCCD also outperforms the performance of other
techniques.

V. CONCLUSION

Improving on the the theoretical framework established in
our previous work, we have modelled a more advanced tech-
nique using causal discovery to locate the exact non-functional
nodes in the topology. The established model can be used to
implement communication in a Multi-Cell city topology using
causal cues as discussed in the paper.The discussed idea can
be very useful in real-time implementation relating to disaster
mitigation.We have used various techniques to establish the
discussed formulation. The proposed city topology hence is
able to recognise faulty nodes and come up with a mechanism
to mitigate the problems.
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